
Temporal properties of random lasers under ultrashort
pulse excitation

Jiantao Lü (吕健滔)1, Ting Fan (樊 婷)2,*, and Guojie Chen (陈国杰)1

1School of Science, Foshan University, Foshan 528000, China
2School of Electronics and Information Engineering, Foshan University, Foshan 528000, China

*Corresponding author: everting82@163.com
Received March 30, 2015; accepted May 27, 2015; posted online July 6, 2015

Temporal properties of random lasing under ultrashort pulse excitation are investigated in a two-dimensional
disordered medium. The pumping light is described individually and coupled into the rate equations. The Max-
well equations and rate equations are numerically solved by using the finite-difference time domain method. The
time evolution of the emission pulse is studied with the variation of the surface-filling fraction, refractive index,
and scatterer radius. Results show that the behavior of random lasing depends strongly on the sample param-
eters. Our work enriches the knowledge about random lasers in the ultrashort pulse pumping
regime and offers some guidance for relevant experiments.

OCIS codes: 140.3430, 290.4210, 320.7120, 190.5890.
doi: 10.3788/COL201513.081407.

As originally predicted by Letokhov[1] in 1968, random la-
sers have attracted much attention in both theoretical and
experimental work[2–10]. Lasing action arises in disordered
media with the combination of multiple scattering and
light amplification. In a random laser, the multiple
scattering process plays an important role in the lasing
process. The lasingmodes are determined bymultiple scat-
tering and not by a conventional laser cavity. Light scat-
tering for an ultrashort pulse in disordered media has
been studied in recent years[11–14]. These works focus on
the role of localized states of ultrashort laser pulse propa-
gation in random media, eventually including nonlinear
effects. However, multiple light scattering only provides
the feedback mechanism. In order to achieve lasing action,
the light amplification process should be considered.
Random laser under ultrashort pulse excitation has

been realized in different types of disordered media[15,16];
however, there is as yet no theory to describe lasing action
in the ultrashort regime. A complete model must include
the dynamics of the gain mechanism and the interference
effects. By combining Maxwell’s equations with rate equa-
tions of the electronic population, Jiang[4] developed the
time-dependent theory for the one-dimensional (1D) case,
and Sebbah[17] extended it to the two-dimensional (2D)
case. Many characteristics of random lasing have been suc-
cessfully explored via this model. In early experiments,
nanosecond or picosecond laser pulses were usually used
as the pumping source. For numerical simulation, only a
few picoseconds are required to reach the stable state in
the system, so the pumping rate was always taken as a
fixed value within this model. However, in the ultrashort
pulse regime, the pumping process only last tens to hun-
dreds of femtoseconds, and therefore a fixed pumping rate
is inadequate. This model has been modified in our pre-
vious work and many new phenomena are explored, such
as the fact that the random lasing action depends strongly

on the pumping process[18]. Despite the fact that most of
the results are in agreement with previous experiments
pumped by femtosecond lasers, we only used a phenom-
enological method to simulate the ultrashort pumping
process in our model. Here we use two individual electrical
fields to describe the pumping pulse and the emission
pulse. By using the polarization equation, the pumping
pulse was coupled into the rate equations. The pumping
light will be scattered in the random media and form some
spatial distribution modes, which leads to the spatially
nonuniform gain in the sample. This is more accurate than
using the special uniform gain in the entire sample. Our
method not only allows us to investigate the spatial dis-
tribution of the pumping pulse and the random lasing
emission independently, but also the relationship (or over-
lapping) of the spatial modes between them.

In this Letter, we report the computational results of
random lasing action excited by an ultrashort pulse by
changing some configuration parameters of the disordered
media, including the surface-filling fraction, scatterer
radius, and refractive index of the scatterers.

The 2D square random system is considered here with
size L2 in the xy–plane. It consists of circular particles with
a radius r and refractive index n2, which are randomly dis-
tributed in a background medium with a refractive index
n1. The scattering strength is varied by adjusting the in-
dex contrast Δn ¼ n2 − n1 and the surface-filling fraction
ΦðΦ ¼ N·πr2∕L2Þ, where N is the amount of the par-
ticles. This system is essentially a 2D simplification of real
experiments including a random collection of cylinders ori-
ented along the z-axis. This model can also be considered
as the multiple scattering light is confined in the xy–plane
among a three-dimensional (3D) sample, resulting in a
quasi-2D type of light transport.

The background medium is chosen as the active part
and modeled as a four-level atomic system. The electrons
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in the ground Level 0 are transferred to the upper Level 3
by an external laser pulse excitation. Electrons in Level 3
flow downward to Level 2 by means of nonradiative decay
process with a very short time. The intermediate Levels 2
and 1 are the upper and lower levels of the laser transition,
respectively. The time evolution of the four-level atomic
system is described by rate equations, as follows
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¼ −

N 3
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−
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·
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dt
; (1)
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where Ni is the population density in Level i, i ¼ 0–3, Pi

(i ¼ 1–2) is the polarization density, and ℏ ¼ h∕2π.
The lifetime of the energy levels are chosen as τ10 ¼
5 × 10−12 s, τ21 ¼ 10−10 s, and τ32 ¼ 10−13 s. The stimu-
lated transition rate is given by the term ðE2∕ℏω2Þ·
ðdP2∕dtÞ, where ω2 is the transition frequency between
Levels 1 and 2 and is chosen as ω2 ¼ 2π× 5.13 × 1014 Hz
(λ2 ¼ 585 nm). Distinct from previous work, we use the
term ðE1∕ℏω1Þ·ðdP1∕dtÞ in the rate equations to describe
the excitation process instead of the pumping rate Wp,
where ω1 is the center frequency of the excitation light
and chosen as ω1 ¼ 2π× 5.64 × 1014 Hz (λ1 ¼ 532 nm).
By coupling the polarization equation and rate equations,
the excitation pulse can be described with an individual
electric field intensity. Therefore, the electrical field of
the pumping pulse E1 and that of the emission pulse E2
were represented separately in the random medium. We
considered a 2D transverse magnetic (TM) field in the
xy–plane; thus the Maxwell’s equations read as (i ¼ 1; 2)
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¼ −
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The polarization density Piði ¼ 1; 2Þ obeys the following

d2P1

dt2
þ Δω1

dP1

dt
þ ω2

1P1 ¼ κ1ðN 3 − N 0ÞE1; (8)

d2P2

dt2
þ Δω2

dP2

dt
þ ω2

2P2 ¼ κ2ðN 1 − N 2ÞE2; (9)

where Δω1 ¼ 6.67 × 1012 Hz is the linewidth of the excita-
tion light, Δω2 ¼ 1∕τ21 þ 2∕T2 ¼ 5 × 1013 Hz is the
linewidth of the atomic transition, T2 ¼ 2 × 10−14 s is
the collision time, the constant κ2 is given by

κ2 ¼ 6πε0c3∕ω2
2τ21. The constant κiði ¼ 1; 2Þ is given by

κ1 ¼ 6πε0c3∕ω2
1τ32 and κ2 ¼ 6πε0c3∕ω2

2τ21, respectively.
By coupling the electric field of the excitation pulse and
population density in atomic levels through the polariza-
tion density equation, we can describe the pumping process
by the external excitation pulse, once the excitation ended,
and the pumping process stopped. Amplification occurs
when the external pumping mechanism produces popula-
tion inversion.

The time function of the excitation pulse is introduced
as a Gaussian

E1ðtÞ ¼ Epeak exp
�
−
4πðt − t0Þ2

τ2

�
; (10)

where τ is the width of the Gaussian pulse, Epeak is the
peak value of the pumping, and t0 is the time correspond-
ing to the peak value.

The electromagnetic fields in the 2D active random
medium can be obtained by finite-difference time domain
(FDTD) methods. A perfectly matched layer (PML) is
used to model an open system as absorbing conditions.

In what follows we will analyze the temporal properties
of the emission light under different sample parameters,
including the surface-filling fraction, scatterer size, and re-
fractive index of the scatterer. Before this, we would like to
distinguish two concepts; ultrashort pulse propagation
and excitation. In the early work by Conti and cowork-
ers[12], they studies the sample with a distribution of spheri-
cal scatterers obtained by molecular dynamics (MD)
simulations. A Gaussian transverse electromagnetic lin-
early y-polarized input pulse was impinged on the xy–face
at normal incidence. By solving the Maxwell equations,
the transmission behavior of the output pulse can be in-
vestigated, such as the spectrum, decay time, and energy
velocity. In our work, a ultrashort pulse with TM polari-
zation was introduced onto the 2D sample as the excita-
tion source. The input light was scattered by the particles
and form a spatially nonuniform gain. We focus on the
temporal properties of the stimulated radiation process
induced by this external pumping pulse. For each set of
FDTD simulations, the electrical field intensity E2 was
integrated with respect to the entire xy–plane, and then
the temporal evolution curve of the emission pulse can
be obtained. We will discuss the laser action in the time
domain with different system parameters, including the
surface-filling fraction, refractive index, and scatterer size.

In a 2D random system, the density of the scatterers can
be described by the surface-filling fraction Φ, which plays
an important role in light localization; once Φ exceed a
critical value, the transition from diffusion to a localiza-
tion state occurs. The parameters of the excitation pulse
are chosen as follows: τ ¼ 200 fs, Epeak ¼ 1 × 109 V∕m,
and t0 ¼ 200 fs. This pumping pulse will be used in the
following simulation work. Here we select a 2D sample
with S ¼ 5 × 5 μm2, r ¼ 60 nm, n1 ¼ 1.4, and n2 ¼ 2.7.
For the pulse pumping case, the stimulated emission ex-
hibits a pulse envelope with peak intensity I peak and width
τE following full-width at half-maximum (FWHM). The
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delay time ΔT is defined as the interval between the ex-
citation pulse and the emission pulse (Fig. 1, inset).
We start from the surface-filling fraction withΦ1 ¼ 35%

and the result is shown in Fig. 1. As can be seen clearly, the
peak intensity of the emission pulse is quite low and the
pulse envelope exhibits a relaxation oscillation behavior
at the trailing edge. As Φ increases gradually, the peak
intensity becomes higher and the pulse width becomes
narrower, and at the same time the relaxation oscillation
behavior disappears. The delay time ΔT decreases as Φ
increases. The corresponding dependence of the peak in-
tensity, pulse width, and delay time of the emission pulse
on the surface-filling fraction is present in Fig. 2. As afore-
mentioned, the system will transform from diffusive to a
localization state as the surface-filling fraction exceeds a
critical value. When Φ1 ¼ 35%, the system is still in a dif-
fusive case and the multiple scattering process is not quite
intense; this leads to a stimulated radiation along with re-
laxation oscillation behavior. If the surface-filling fraction
increases further, a more intensive multiple scattering oc-
curs among the system and results in a strong stimulated
radiation. The transport mean free path lt can be esti-
mated by the formula lt ¼ 1∕ρ·σs, where ρ is the scatterer
concentration and σs is the effective scattering cross sec-
tional area. For our 2D sample, the scatterer concentra-
tion can be represented by the surface-filling fraction Φ.
The transport mean free path lt decreases with increasing
surface-filling fraction Φ, which will lead to a more inten-
sive light scattering process and form a localized state.
Therefore, as Φ increases, the stimulated emission occurs
more quickly and lasts a shorter time, and simultaneously
the residual oscillations disappear.
Light localization comes from the interacting between

the photons and scattering particles. In previous work,
Wiersma[19] demonstrated that the emission wavelength
can be controlled by changing the particle size. This indi-
cates that scatterer radius may change the multiple scat-
tering processes. In what follows, we will investigate how
the scatterer size influences the light localization level,

which is represented by the temporal properties of the
emission pulse. As discussed previously, the surface-filling
fraction plays an important role in light localization. In
order to eliminate this influence, we choose three different
scatterer radii (r1 ¼ 50 nm, r2 ¼ 60 nm, and r3 ¼ 70 nm)
and keep the surface-filling fraction constant (Φ ¼ 40%).
A 2D sample with S ¼ 5 × 5 μm2, n1 ¼ 1.4, and n2 ¼ 2.7
is used here.

As can be seen in Fig. 3, when the scatterer radius
r1 ¼ 50 nm, the peak intensity and width of the emission
pulse are about I peak1 ¼ 1.17 × 1010 ða:u:Þ and τE1 ¼
1.83 ps, respectively, with a delay time ΔT1 ¼ 8.33 ps.
When the radius is increased to r2 ¼ 60 nm, the peak in-
tensity increases to I peak2 ¼ 1.92 × 1010 ða:u:Þ and the
pulse width and delay time decrease to τE2 ¼ 1.55 ps
and ΔT 2 ¼ 5.54 ps, respectively. As the radius increases
further to r3 ¼ 70 nm, a more intense and shorter pulse
emerges. Light localization can only take place in optical
materials that are extremely strongly scattering. It requires
the transport mean free path lt and wavevector k to satisfy
k·lt ≤ 1, which is known as the Ioffe–Regel criterion[7].
According to the Mie scattering theory, the transport
mean free path lt is inversely proportional to the effective
scattering cross sectional area σs, whereas σs increases as
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Fig. 1. Emission light intensity versus time with different sur-
face-filling fraction. Inset, definition of delay time ΔT , emission
pulse width τE , and peak intensity I peak. The filled region is the
excitation pulse.
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the particle size becomes larger. This means that the trans-
port mean free path lt decreases as the scatterer radius in-
creases. As aformentioned, a shorter lt will lead to a more
strongly multiple scattering and higher localized state,
which will produce a sharper emission pulse.
Light scattering comes from the contrast of the refrac-

tive index between the particles and background. With
the FDTDmethod in this work, we will study the multiple
scattering of light and the stimulated emission behavior in
2D disordered system for a varying scattering strength, as
obtained by changing the scatterer refractive index n2. We
then characterize the stimulated emission behavior by the
pulse parameters including the peak intensity, pulse
width, and delay time. The refractive index of the scatter-
ers n2 is chosen between 1.5 and 2.2 in accordance with
some previous works[12].
Figure 4 displays the emission light intensity versus

time with the scatterer refractive index n2 as a parameter.
It shows that the refractive index has an effect on the tem-
poral properties of the emission pulse. We start from the
weak scattering regime for n2 ¼ 1.5; a weak pulse appears
along with some residual oscillations, which indicates that
the stimulated radiation process is not quite strong. As the
refractive index increases to n2 ¼ 1.8, the trailing edge of
the emission pulse becomes smooth and a Gaussian shape
envelope of the pulse emerges. As the refractive index in-
crease further, the peak intensity becomes stronger and
the pulse width becomes narrower, along with a shorter
delay time. Results demonstrate that the stimulated radi-
ation becomes stronger as the multiple scattering strength
increases, which comes from the increasing of the scatterer
refractive index. This has been discussed by Vanneste[20] in
previous work. He investigated the lasing action in active
randommedia in the weak and strong scattering regime by
changing the refractive index of the scatterers. When the
refractive index is low, lasing modes primarily consist of
traveling waves and are spatially extended over the entire
system. If the refractive index increases further, lasing
modes transit to the localized regime. When the localized
state forms, the stimulated emission process becomes
stronger and leads to a more intense emission pulse.
In conclusion, the previous time-dependent theory of

random lasers is extended to the ultrashort pulse pumping

regime by introducing an independent electric field to de-
scribe the excitation pulse. By use of the FDTD method, a
numerical study on the pulse shape of laser emission in 2D
active random media is performed. The results show that
the temporal properties of the emission pulse depend
strongly on the sample parameters, including the refrac-
tive index of the scatterer, surface-filling fraction, and par-
ticle size. As the surface-filling fraction and refractive
index of the particles increase, the pulse width and delay
time decrease together, whereas the peak intensity of the
emission pulse increases. However, the variation trend of
the emission pulse behaves in the opposite manner as the
scatterer radius increases. When the system is in the weak
scattering regime, the lasing pulse exhibits some residual
oscillations at the trailing edge. This phenomenon will dis-
appear while the system transits to the strong scattering
regime by changing some sample parameters. All these
results give us good guidance in relevant experiments,
especially in controlling the lasing emission in the tempo-
ral regime under ultrashort pulse excitation.
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Fig. 4. Emission light intensity versus time with different scat-
terer refractive indices.
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